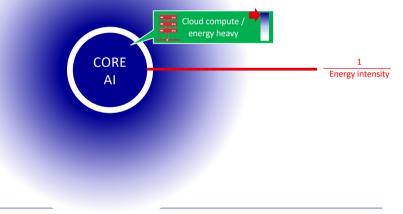
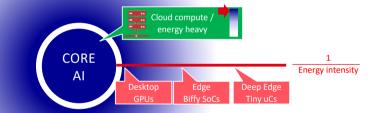
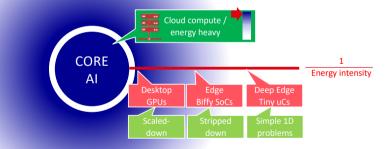
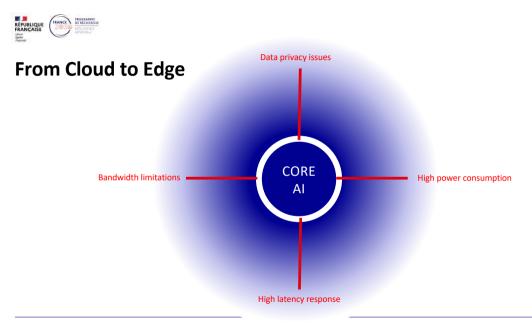
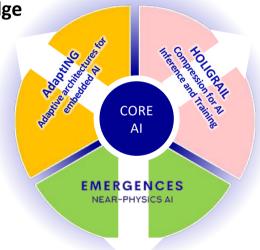

RENNET











Emergences

Near-physics emerging models for embedded AI

Pierre Boulet (CRISTAL) Julie Grollier (UMPHY) Fabio Pavanello (INL) Maxime Pelcat (IETR) Laurent Perrinet (INT) Jean-Michel Portal (IN2MP) Martial Mermillod (LPNC) Benoit Miramond (LEAT) Marina Reyboz (CEA-LIST) Sylvain Saighi (IMS) Gilles Sassatelli (LIRMM) Damien Querlioz (C2N) Philippe Talatchian (SPINTEC) Elisa Vianello (CEA-LETI)

Near-physics emerging models for embedded AI

Keywords

Energy efficiency Embedded AI / Edge AI Emerging AI models Near-physics AI Bio-inspiration

Key figures

T₀: September 1st, 2023 Duration: 48 month 14 Partners Nb of PhD: 19 Nb of Post doc: 13 TRL: basic research Total grant requested: 6.8 M€

Emergences, near-physics AI

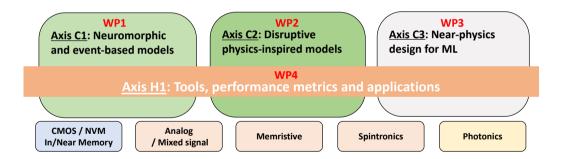
... at the Edge

- Exploit the intrinsic properties of physical devices for ML
 - · Rather than massive linear algebra on energy-hungry digital hardware
- Conventional formal models & training algorithms poorly amenable
 - Emerging models inspired from physics itself & neurosciences
 - Alongside associated training algorithms
- Shaped & tuned for sustainable AI in sound application domains
 - Environmental monitoring, health

Reduce energy consumption of embedded AI models Structure the French landscape of embedded AI

Which models are we talking about?

3 classes



Physics-inspired models

Formal models at the edge of technology

Project structure

WP1 Event-driven, neuromorphic & sparse models

WP1 - SNN / Event-driven models

Most sota SNN implementations fail to leverage spiking sparsity energy-wise

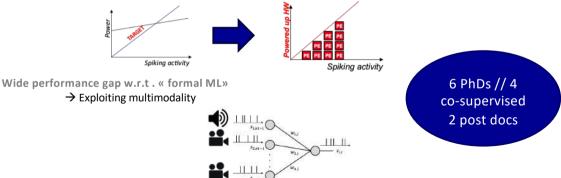
 \rightarrow HW templates that leverage sparcity: NVM & novel techniques

WP1 - SNN / Event-driven models

Most sota SNN implementations fail to leverage spiking sparsity energy-wise

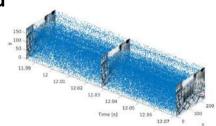
ightarrow HW templates that leverage sparcity: NVM & novel techniques


6 PhDs // 4 co-supervised 2 post docs



WP1 - SNN / Event-driven models

Most sota SNN implementations fail to leverage spiking sparsity energy-wise

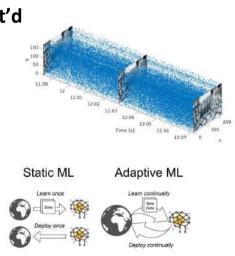


WP1 - SNN / Event-driven models cont'd

Further investigate sparsity..

- \rightarrow Sparsified network topologies
- \rightarrow Event-based sensors for true end-to-end

EMERGENCES NEAR-PHYSICS AI


WP1 - SNN / Event-driven models cont'd

Further investigate sparsity..

- ightarrow Sparsified network topologies
- ightarrow Event-based sensors for true end-to-end

Training is key..

- \rightarrow Novel (online & local) training algorithms
- \rightarrow Incremental learning

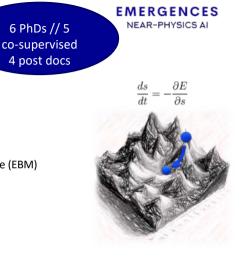
WP2 Models inspired from physics

6 PhDs // 5 co-supervised 4 post docs

WP2 – Physics-inspired models

Stochastic & Bayesian models

ightarrow Exploiting memristive devices properties


WP2 – Physics-inspired models

Stochastic & Bayesian models

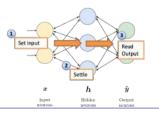
ightarrow Exploiting memristive devices properties

Models having an intrinsic dynamics

 \rightarrow Mapped onto « tunable » physical memristive hardware (EBM)

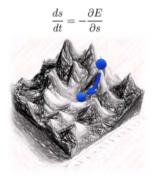
WP2 – Physics-inspired models

Stochastic & Bayesian models


 \rightarrow Exploiting memristive devices properties

Models having an intrinsic dynamics

 \rightarrow Mapped onto « tunable » physical memristive hardware (EBM)


Above all, local training algorithms

→ Equilibrium Propagation, NeuralODEs, Forward-Forward...

Inference

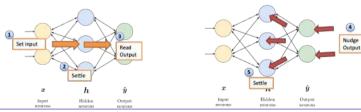
6 PhDs // 5 co-supervised 4 post docs

EMERGENCES

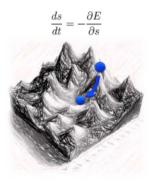
NEAR-PHYSICS AI

WP2 – Physics-inspired models

Stochastic & Bayesian models


ightarrow Exploiting memristive devices properties

Models having an intrinsic dynamics


 \rightarrow Mapped onto « tunable » physical memristive hardware (EBM)

Above all, local training algorithms

→ Equilibrium Propagation, NeuralODEs, Forward-Forward...

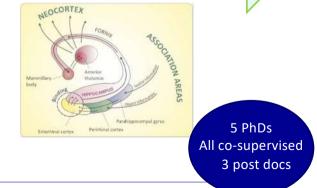
6 PhDs // 5 co-supervised 4 post docs

EMERGENCES

NEAR-PHYSICS AI

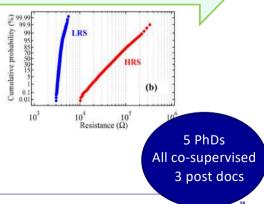
Inference

Training

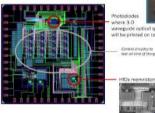


Improve accuracy and/or energy efficiency of deep learning for inference & learning

Improve accuracy and/or energy efficiency of deep learning for inference & learning


- Embedded multimodal continual learning (link with WP1)
 - Brain inspired model (link with neurosciences)
 - Improve accuracy / robustness
 - Co-design between algorithms & hardware

Improve accuracy and/or energy efficiency of deep learning for inference & learning


- Embedded multimodal continual learning (link with WP1)
 - Improve accuracy / robustness
 - Brain inspired model (link with neurosciences)
 - Co-design between algorithms & hardware
- Non Volatile Memory & IMC / NMC technologies
 - Complex linear algebra functions and attentional mechanisms thanks to NVM-based IMC
 - On-chip training with NVM weight storage (variability-aware)

Improve accuracy and/or energy efficiency of deep learning for inference & learning

- Embedded multimodal continual learning (link with WP1)
 - Improve accuracy / robustness
 - Brain inspired model (link with neurosciences)
 - Co-design between algorithms & hardware ٠
- Non Volatile Memory & IMC / NMC technologies
 - Complex linear algebra functions and attentional mechanisms thanks to NVM-based IMC
 - On-chip training with NVM weight storage (variability-aware) •
- Hybrid photonic/electronic schemes
 - For ultra-large ANNs
 - Possibly incorporating NVM devices

waveguide optical spatial filter will be printed on too

> Contrad discussion to west will belood of Abstract

> > 5 PhDs All co-supervised 3 post docs

WP4 Tools, performance metrics & applications

WP4 – Tools, performance metrics & applications

Design a **strategy** to : Evaluate the applicability of proposed contributions to other models Perform comparative analysis using representative criteria

- Benchmarking
 - Datasets
 - KPIs: perf, power, tolerance, sustainability etc.
 - · Benchmarking protocols and domain-specific recommendations
- Tooling
 - Common tools at most (simulators, porting of training algorithms, bridges where possible)
 - Tools for DSE / AutoML / scalability analysis
- Applications
 - Health
 - Monitoring (environment)
 - Wearables

3-years Platform engineer 2 PhDs including 1 co-supervision 4 post docs

Specific project organisation

Workshop every 6 months

- To assure collaborative & cooperative strategies
- To assure a global multi-disciplinary approach
 - Strong link with neurosciences
 - · Interest for societal impact: invitation of philosophers/sociologists
 - Interest for the new legislation : invitation of jurists

Specific project organisation

Workshop every 6 months

- To assure collaborative & cooperative strategies
- To assure a global multi-disciplinary approach
 - Strong link with neurosciences
 - · Interest for societal impact: invitation of philosophers/sociologists
 - Interest for the new legislation : invitation of jurists
 - Development of sustainable approaches :

sustainable tech (dev specific KPIs) + tech for sustainability (specific use cases)

Specific project organisation

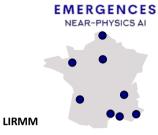
Workshop every 6 months

- To assure collaborative & cooperative strategies
- To assure a global multi-disciplinary approach
 - Strong link with neurosciences
 - · Interest for societal impact: invitation of philosophers/sociologists
 - Interest for the new legislation : invitation of jurists
 - Development of sustainable approaches :

sustainable tech (dev specific KPIs) + tech for sustainability (specific use cases)

Advisory board

•Michel Paindavoine •Christian Gamrat •David Bol •Ian O'Connor


Roles and achievements of partners

IMS

SNN

WP1

NVMs

Digital & mixed signal AI4CAD

WP1, WP2, Management

LEAT

Multimodality

& HW imp.

SNN

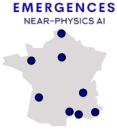
WP1

CRISTAL

SNN

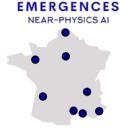
Tools

WP1. WP4



G. Sassatelli

Roles and achievements of partners



SPINTEC	C2N	UMPHY	INL
Stochastic & prob. MRAM	Stochatic & EBM models	Emerg. models Bio-inspired train.	Photonic dev.
WP2	WP2	WP2	WP2

Roles and achievements of partners

Stochatic & prob. models

WP2, WP3

CEA-LETI

CEA-LIST

Emerging models & NVMs HW implementations (IMC)

WP2, WP3, WP4, Management WP3

IM2NP

NVMs & hardware imp.

Neurosciences partners

INT & LPNC

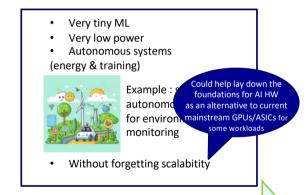
M. Mermillod

Project outcomes

- Very tiny ML
- Very low power
- Autonomous systems (energy & training)

Project outcomes

- Very tiny ML
- Very low power
- Autonomous systems (energy & training)



Example : smart autonomous sensors for environment monitoring

Project outcomes

Provide guidance towards

a choice of model, a training algorithm & a given hardware solution on a per use-case basis

24/03/2024

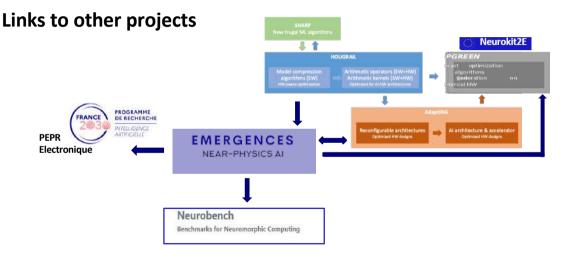
EMERGENCES

NEAR-PHYSICS AI

LABORATOIRE D'ELECTRONIQUE ANTENNES ET TELECOMMUNICATIONS

IA : NOTRE AMBITION POUR LA FRANCE

MARS 2024


Recommandation nº 5

Faire de la France un pionnier de l'IA pour la planète en renforçant la transparence environnementale, la recherche dans des modèles à faible impact, et l'utilisation de l'IA au service des transitions énergétique et environnementales.

https://www.gouvernement.fr/upload/media/content/0001/09/4d3cc456dd2f5b9d79ee75feea63b47f10d75158.pdf

EMERGENCES NEAR-PHYSICS AI

Dissemination & Exploitation

Dissemination activities :

- Publication activities in ML & embedded venues
- Proactive dissemination in networks (Hipeac, GDRs) & workshops


Rather « basic research project » still :

- Dissemination to the industry too
- Leveraging existing partners' industrial collaborations through tools & applications
- Link with higher TRL France2030 & EU projects having SMEs in the loop : DeepGreen, Neurokit

EMERGENCES NEAR-PHYSICS AI

Links to other projects

