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Bandwidth limitations

Data privacy issues

High latency response

High power consumption
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Near-physics emerging models for embedded AI 

TO: September 1st, 2023 
Duration: 48 month
14 Partners
Nb of PhD: 19
Nb of Post doc: 13
TRL: basic research
Total grant requested: 6.8 M€ 

Keywords
Energy efficiency
Embedded AI / Edge AI
Emerging AI models 
Near-physics AI
Bio-inspiration
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… at the Edge

• Exploit the intrinsic properties of physical devices for ML

• Rather than massive linear algebra on energy-hungry digital hardware

• Conventional formal models & training algorithms poorly amenable

• Emerging models inspired from physics itself & neurosciences

• Alongside associated training algorithms 

• Shaped & tuned for sustainable AI in sound application domains

• Environmental monitoring, health

Reduce energy consumption of embedded AI models
Structure the French landscape of embedded AI 



Which models are we talking about?
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3 classes

Bio inspired models : Neuromorphics, SNN & Sparsity

Physics-inspired models

Formal models at the edge of technology



Project structure
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Scientific and technical description of the project 

We regard the emerging core models as originating from three main disciplines: biology, statistical 
physics, and contemporary ML (see Figure 2). From these three disciplines, we derive three core 
scientific axes (which corresponds to the three main research directions of part I) described in the 
following alongside a concise state-of-the-art survey for supporting the intended research activities. 

 

Figure 2: Scientific breakdown of the project into core and horizontal axes. 
Each scientific axis is shaped into a workpackage (WP) following the same numbering as the core 
axes (Axis C1 = WP1 etc.). Each workpackage has a summary effort table that assumes the 
following: 

- Ph.D. theses are accounted for a standard 36 month duration, and reported as unit Ph.Ds 
- Postdocs / fixed term engineers are displayed in p.m. 
- Last row labelled “Effort” in some workpackages refers to permanent staff work effort (CEA-

List, CEA-Leti, Spintec, LIRMM) for which budget is claimed. 
- Most permanent staff supervision effort (related to Ph.Ds, postdocs and engineers) 

although significative is omitted due not being ineligible for funding. 
- Most fixed-term personnel are supervised by at least 2 partners, yet only the financing 

partner has corresponding p.m. effort displayed in the table. Footnotes are inserted for 
clarifying co-supervision, and Table 2 provides a summary of the same. 

Finally, note we decide (unless specified otherwise) to pair milestones and deliverables so as to 
ensure efficient and unbiased reporting and milestone assessment.  

Axis C1: Neuromorphic 
and event-based models

• NVMs / GALS design
• Double sparsity
• Multimodality
• Incremental learning

Axis C2: Disruptive 
physics-inspired models

• Probabilistic/Bayesian
• EBM circuits
• Scalable design
• Incremental learning

Axis C3: Near-physics 
design for ML

• Onchip learning w. NVMs
• NVM-based IMC
• Continual learning
• Bio-inspired algorithms

Axis H1: Tools, performance metrics and applications

Management & dissemination

Core models
Bio-inspired Physics-inspired Advanced ML

CMOS / NVM
In/Near Memory

Analog
/ Mixed signal Memristive Spintronics Photonics

WP1 WP2 WP3

WP4

WP5
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WP1 
Event-driven, neuromorphic & sparse models
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WP1 - SNN / Event-driven models
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Most sota SNN implementations fail to leverage spiking sparsity energy-wise

à HW templates that leverage sparcity: NVM & novel techniques

6 PhDs // 4 
co-supervised

2 post docs
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WP1 - SNN / Event-driven models
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Most sota SNN implementations fail to leverage spiking sparsity energy-wise

à HW templates that leverage sparcity: NVM & novel techniques

  à Exploiting multimodality
Wide performance gap w.r.t . « formal ML» 6 PhDs // 4 

co-supervised
2 post docs



WP1 - SNN / Event-driven models cont’d

20/03/2024 18

Further investigate sparsity..

 à Sparsified network topologies
  à Event-based sensors for true end-to-end 
 

https://ai.kuleuven.be/stories/post/2021-05-10-continual-learning/

https://paperswithcode.com/dataset/event-camera-dataset



WP1 - SNN / Event-driven models cont’d

20/03/2024 19

Further investigate sparsity..

 à Sparsified network topologies
  à Event-based sensors for true end-to-end 
 

  à Novel (online & local) training algorithms
  à Incremental learning

Training is key..

https://ai.kuleuven.be/stories/post/2021-05-10-continual-learning/

https://paperswithcode.com/dataset/event-camera-dataset



WP2 
Models inspired from physics
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WP2 – Physics-inspired models

21

Stochastic & Bayesian models

à Exploiting memristive devices properties

6 PhDs // 5 
co-supervised

4 post docs
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Stochastic & Bayesian models

Models having an intrinsic dynamics

 à Exploiting memristive devices properties

  à Mapped onto « tunable » physical memristive hardware (EBM)

6 PhDs // 5 
co-supervised

4 post docs
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Stochastic & Bayesian models

Models having an intrinsic dynamics

 à Exploiting memristive devices properties

  à Mapped onto « tunable » physical memristive hardware (EBM)

  à Equilibrium Propagation, NeuralODEs, Forward-Forward…
Above all, local training algorithms

6 PhDs // 5 
co-supervised

4 post docs

Inference
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Stochastic & Bayesian models

Models having an intrinsic dynamics

 à Exploiting memristive devices properties

  à Mapped onto « tunable » physical memristive hardware (EBM)

  à Equilibrium Propagation, NeuralODEs, Forward-Forward…
Above all, local training algorithms

6 PhDs // 5 
co-supervised

4 post docs

Inference Training



WP3 
Formal models at the edge of technology
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WP3 – Formal models at the edge of technology
Improve accuracy and/or energy efficiency of deep learning 

for inference & learning



24/03/2024 27

• Embedded multimodal continual learning (link with WP1)

• Brain inspired model (link with neurosciences) 
• Improve accuracy / robustness
• Co-design between algorithms & hardware 

WP3 – Formal models at the edge of technology
Improve accuracy and/or energy efficiency of deep learning 

for inference & learning

5 PhDs  
All co-supervised

   3 post docs
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WP3 – Formal models at the edge of technology
Improve accuracy and/or energy efficiency of deep learning 

for inference & learning

• Embedded multimodal continual learning (link with WP1)

• Improve accuracy / robustness
• Brain inspired model (link with neurosciences) 
• Co-design between algorithms & hardware

• Non Volatile Memory & IMC / NMC technologies

• Complex linear algebra functions and attentional mechanisms 
thanks to NVM-based IMC
• On-chip training with NVM weight storage (variability-aware) 5 PhDs  

All co-supervised
   3 post docs
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WP3 – Formal models at the edge of technology
Improve accuracy and/or energy efficiency of deep learning 

for inference & learning

• Embedded multimodal continual learning (link with WP1)

• Improve accuracy / robustness
• Brain inspired model (link with neurosciences) 
• Co-design between algorithms & hardware

• Non Volatile Memory & IMC / NMC technologies

• Complex linear algebra functions and attentional mechanisms 
thanks to NVM-based IMC
• On-chip training with NVM weight storage (variability-aware)

• Hybrid photonic/electronic schemes

• For ultra-large ANNs
• Possibly incorporating NVM devices

5 PhDs  
All co-supervised

   3 post docs



WP4 
Tools, performance metrics 

& applications
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• Benchmarking
• Datasets
• KPIs: perf, power, tolerance, sustainability etc.
• Benchmarking protocols and domain-specific recommendations

• Tooling
• Common tools at most (simulators, porting of training algorithms, 

bridges where possible)
• Tools for DSE / AutoML / scalability analysis

• Applications
• Health
• Monitoring (environment)
• Wearables

WP4 – Tools, performance metrics & applications

Design a strategy to : Evaluate the applicability of proposed contributions to other models
Perform comparative analysis using representative criteria

3-years Platform engineer
2 PhDs including 1 

co-supervision
4 post docs
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Specific project organisation
Workshop every 6 months

• To assure collaborative & cooperative strategies

• To assure a global multi-disciplinary approach

• Strong link with neurosciences
• Interest for societal impact: invitation of philosophers/sociologists 
• Interest for the new legislation : invitation of jurists
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• To assure collaborative & cooperative strategies

• To assure a global multi-disciplinary approach

• Strong link with neurosciences
• Interest for societal impact: invitation of philosophers/sociologists 
• Interest for the new legislation : invitation of jurists
• Development of sustainable approaches : 
sustainable tech (dev specific KPIs) + tech for sustainability (specific use cases)
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Specific project organisation
Workshop every 6 months

• To assure collaborative & cooperative strategies

• To assure a global multi-disciplinary approach

• Strong link with neurosciences
• Interest for societal impact: invitation of philosophers/sociologists 
• Interest for the new legislation : invitation of jurists
• Development of sustainable approaches : 
sustainable tech (dev specific KPIs) + tech for sustainability (specific use cases)

Advisory board
•Michel Paindavoine

•Christian Gamrat
•David Bol

•Ian O’Connor



LEAT
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Roles and achievements of partners

IMS

SNN
Multimodality 
& HW imp.
WP1

SNN
NVMs

WP1

B. Miramond S. Saighi

CRISTAL

SNN
Tools

WP1, WP4

P. Boulet

LIRMM

Digital & mixed signal
AI4CAD

WP1, WP2, Management

G. Sassatelli



C2N
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Roles and achievements of partners

Stochatic & EBM models

WP2

D. Querlioz

SPINTEC

Stochastic & prob.
MRAM

WP2

P. Talatchian

UMPHY INL

Photonic dev.

WP2

Emerg. models
Bio-inspired train.

WP2

J. Grollier F. Pavanello



CEA-LETI
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Roles and achievements of partners

Neurosciences partners

INT & LPNC

Stochatic & prob. models
NVMs

WP2, WP3

E. Vianello L. Perrinet M. Mermillod

IM2NP

NVMs & hardware imp.

WP3

J.M. Portal

CEA-LIST

Emerging models & NVMs
HW implementations (IMC)

WP2, WP3, WP4, Management

M. Reyboz A. Molnos
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Project outcomes
• Very tiny ML
• Very low power
• Autonomous systems 
(energy & training)
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• Very tiny ML
• Very low power
• Autonomous systems 
(energy & training)

Project outcomes

Example : smart 
autonomous sensors 
for environment 
monitoring
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• Very tiny ML
• Very low power
• Autonomous systems 
(energy & training)

• Without forgetting scalabitity

Project outcomes

Provide guidance towards 
a choice of model, a training algorithm & a given hardware solution on a per use-case basis 

Example : smart 
autonomous sensors 
for environment 
monitoring

Could help lay down the 
foundations for AI HW

as an alternative to current 
mainstream GPUs/ASICs for 

some workloads
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THANKS!



IA : NOTRE AMBITION POUR LA FRANCE
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MARS 2024 

https://www.gouvernement.fr/upload/media/content/0001/09/4d3cc456dd2f5b9d79ee75feea63b47f10d75158.pdf 

https://www.gouvernement.fr/upload/media/content/0001/09/4d3cc456dd2f5b9d79ee75feea63b47f10d75158.pdf
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PEPR
Electronique



Dissemination & Exploitation 
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Dissemination activities :
• Publication activities in ML & embedded venues
• Proactive dissemination in networks (Hipeac, GDRs) & workshops

Rather « basic research project » still :
• Dissemination to the industry too
• Leveraging existing partners’ industrial collaborations through tools & applications 
• Link with higher TRL France2030 & EU projects having SMEs in the loop : DeepGreen, Neurokit
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