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Backdoor / poisoning integrity attacks place mislabeled training points in a region of the 
feature space far from the rest of training data. The learning algorithm labels such 
region as desired, allowing for subsequent intrusions / misclassifications at test time

Training data (no poisoning)

61Figure 5: Conceptual representation of the impact of poisoning integrity attacks
(including backdoor and trojaning attacks) on the decision function of learning
algorithms. The example, taken from [71], shows a backdoored stop sign mis-
classified, as expected, as a speedlimit sign.

tion of malware code to have the corresponding sample mis-
classified as legitimate, or manipulation of images to mislead
object recognition. We consider here the formulation reported
in [7], which extends our previous work [38] from two-class to
multiclass classifiers, by introducing error-generic and error-
specific maximum-confidence evasion attacks. With reference
to Eq. (1), the evasion attack samplesD0c can be optimized one
at a time, independently, aiming to maximize the classifier’s
confidence associated to a wrong class. We will denote with
fi(x) the confidence score of the classifier on the sample x for
class i. These attacks can be optimized under di↵erent levels
of attacker’s knowledge through the use of surrogate classifiers,
so we omit the distinction between fi(x) and f̂i(x) below for
notational convenience.
Error-generic Evasion Attacks. In this case, the attacker is
interested in misleading classification, regardless of the output
class predicted by the classifier. The problem can be thus for-
mulated as:

max
x0

A(x0, ✓) = ⌦(x0) = max
l,k

fl(x) � fk(x) , (2)

s.t. d(x, x0)  dmax , xlb � x0 � xub , (3)

where fk(x) denotes the discriminant function associated to the
true class k of the source sample x, and maxl,k fl(x) is the clos-
est competing class (i.e., the one exhibiting the highest value
of the discriminant function among the remaining classes). The
underlying idea behind this attack formulation, similarly to [5],
is to ensure that the attack sample will be no longer classified
correctly as a sample of class k, but rather misclassified as a
sample of the closest candidate class. The manipulation con-
straints �(Dc) are given in terms of: (i) a distance constraint
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Figure 6: Examples of error-specific (left) and error-generic (right) evasion, as
reported in [7]. Decision boundaries among the three classes (blue, red and
green points) are shown as black lines. In the error-specific case, the initial
(blue) sample is shifted towards the green class (selected as target). In the
error-generic case, instead, it is shifted towards the red class, as it is the closest
class to the initial sample. The gray circle represents the feasible domain, given
as an upper bound on the `2 distance between the initial and the manipulated
attack sample.

d(x, x0)  dmax, which sets a bound on the maximum input per-
turbation between x (i.e., the input sample) and the correspond-
ing modified adversarial example x0; and (ii) a box constraint
xlb � x0 � xub (where u � v means that each element of u has
to be not greater than the corresponding element in v), which
bounds the values of the attack sample x0.

For images, the former constraint is used to implement either
dense or sparse evasion attacks [7, 77, 78]. Normally, the `2 and
the `1 distances between pixel values are used to cause an in-
distinguishable image blurring e↵ect (by slightly manipulating
all pixels). Conversely, the `1 distance corresponds to a sparse
attack in which only few pixels are significantly manipulated,
yielding a salt-and-pepper noise e↵ect on the image [77, 78].
In the image domain, the box constraint can be used to bound
each pixel value between 0 and 255, or to ensure manipulation
of only a specific region of the image. For example, if some
pixels should not be manipulated, one can set the correspond-
ing values of xlb and xub equal to those of x. This is of interest to
create real-world adversarial examples, as it avoids the manipu-
lation of background pixels which do not belong to the object of
interest [7, 17]. Similar constraints have been applied also for
evading learning-based malware detectors [38, 39, 48, 77, 78].
Error-specific Evasion Attacks. In the error-specific setting,
the attacker aims to mislead classification, but she requires the
adversarial examples to be misclassified as a specific class.
The problem is formulated similarly to error-generic evasion
(Eqs. 2-3), with the only di↵erences that: (i) the objective func-
tion A(x0, ✓) = �⌦(x0) has opposite sign; and (ii) fk denotes
the discriminant function associated to the targeted class, i.e.,
the class which the adversarial example should be (wrongly)
assigned to. The rationale in this case is to maximize the con-
fidence assigned to the wrong target class fk, while minimizing
the probability of correct classification [5, 7].
Attack Algorithm. The two evasion settings are conceptually
depicted in Fig. 6. Both can be solved through a straightforward
gradient-based attack, for di↵erentiable learning algorithms (in-
cluding neural networks, SVMs with di↵erentiable kernels,
etc.) [7, 38]. Non-di↵erentiable learning algorithms, like deci-
sion trees and random forests, can be attacked with more com-
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FOUNDRY’s mission statement
«Develop the theoretical foundations of robustness and 
reliability in machine learning and artificial intelligence»

The challenges ahead
1. The « known unknowns » #adversarial attacks #data-centric impediments

2. The « unknown unknowns » #multi-agent learning  #online adaptation 

3. Balance concurrent desiderata #fairness  #privacy  # strategic agents



1. Tame the «known 
unknowns»

• Robustness to data-centric 
impediments («bad data»)

• Shortfalls in the data 
(incomplete observations, 
label shifts, poisoning)

• Impediments at inference 
time (adversarial attacks,…) 

Research Axes
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2. Adapt to the «unknown 
unknowns»

• Adaptivity to unmodeled 
phenomena and/or the 
environment

• From best- to worst-case 
guarantees

• Adapt « on the fly » to non-
stationary environments

3. Balance concurrent / 
incompatible objectives

• Robustness v. accuracy

• Guarantees in privacy 
and/or fairness vs. 
predictive accuracy

• Selfishly-minded agents



The partners
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Skills and expertise

Machine Learning

Statistical 
Learning

Game Theory &
  Optimization

Reinforcement 
Learning

Optimal 
Transport

Learning 
in games

Differential 
privacy

Adversarial 
models

Distributionally
robust optimization

Bandits

Matching

Online 
Learning

Sequential 
statistics
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Consortium breakdown
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• POLARIS  (lead: P. Mertikopoulos)
# game theory  #optimization  #online learning  #reinforcement learning

• ENSL  (A. Garivier)
#sequential statistics  #bandits  #reinforcement learning  #differential privacy

• FAIRPLAY  (P. Loiseau)
#matching  #fairness  #privacy  #online learning  #online algorithms

• LTCI  (F. D’Alché-Buc)
#extreme value theory  #robust statistics  #structure data  #Monte Carlo

• MILES  (Y. Chevaleyre)
#adversarial models  #game theory  #deep learning  #computational learning

• SCOOL  (E. Kaufmann)
#reinforcement learning  #bandits  #non-parametric methods  #privacy



Targeted outcomes & collaborations

20/03/2024 11



Work breakdown structure
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1. WP1: Resilience to data-centric impediments

• Robustness against corruptions and contaminations

• Risk-aware learning with robustness guarantees

• Adversarial robustness and reliability

2. WP2: Adaptivity to unmodeled phenomena and the environment

• Robust multi-agent learning

• Learning in coopetitive environments

• Learning unmodeled structures

3. WP3: Robustness in the presence of concurrent aims and goals

• Fairness-driven trade-offs

• Privacy-driven trade-offs

• Robust multi-objective machine learning
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WP1: RESILIENCE TO DATA-CENTRIC IMPEDIMENTS
T0—T6 T6—T12 T12—T18 T18—T24 T24—T30 T30—T36 T36—T42 T42—T48

Task 1.1 

Corruptions & 
Contaminations

LTCI PhD: Data depth for robustness to contaminations

SCOOL PhD: Corruption and misspecified structures in bandits

Task 1.2 

Risk-aware Learning 
with Robustness 
Guarantees

SCOOL PhD: Risk-aware model-based reinforcement learning

ENSL PD: Risk-aware planning in MDPs ENSL PD: Risk-awareness in RL

POLARIS PhD: Robust reinforcement learning in MDPs

Task 1.3 

Adversarial 
Robustness and 
Reliability

LTCI PhD: Robust and reliable structured output prediction

MILES PD: Adversarial robustness in large ML models

LTCI PD: Confidence and robustness certificates

MILES PhD: Provable robustness via optimal transport

D1.1: rl-berry D1.3: DRL simulator

D1.4: provably-robust

D1.2: stat-anom / robust-struct
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WP2: ADAPTIVITY TO UNMODELED PHENOMENA AND THE ENVIRONMENT
T0—T6 T6—T12 T12—T18 T18—T24 T24—T30 T30—T36 T36—T42 T42—T48

Task 2.1 

Robust Multi-agent 
Learning

POLARIS PhD: Robustness to stochastic perturbations in game-theoretic learning

POLARIS PhD: Robust learning with self-motivated agents

MILES PhD: Bounded rationality in stochastic games

Task 2.2 

Learning in 
Coopetitive 
Environments 

FAIRPLAY PhD: Coopetitive multi-agent learning

FAIRPLAY PhD: Fairness in coopetitive multi-agent systems

POLARIS PD: Universal algorithms for multi-agent learning

Task 2.3 

Learning Unmodeled 
Structures

FAIRPLAY PD: Learning random structures

FAIRPLAY PD: Matching with learned preferences

SCOOL PD: Robust non-parametric algorithms for structured bandits

D2.1: monograph

D2.2: GameSeer

D2.3: book
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WP3: ROBUSTNESS IN THE PRESENCE OF CONCURRENT AIMS AND GOALS
T0—T6 T6—T12 T12—T18 T18—T24 T24—T30 T30—T36 T36—T42 T42—T48

Task 3.1 

Fairness-driven 
Trade-offs in 
Machine Learning

MILES PhD: Fairness in generative models

LTCI PhD: Fairness-utility trade-offs Rank-based techniques for fair statistical learning

LTCI PhD: Rank-based techniques for fair statistical learning

Task 3.2 

Privacy-driven 
Trade-offs in 
Machine Learning

ENSL PhD: Statistical trade-offs of differential privacy

SCOOL PhD: Cost of privacy in adaptive testing

FAIRPLAY PD: Privacy & incentives for data release

Task 3.3 

Robust 
Multi-Objective 
Machine Learning

FAIRPLAY PhD: Fairness with privacy in online learning

POLARIS PhD: Robust mechanism design for high-stakes applications

LTCI PD: Robust multi-objective leanring on graphs

SCOOL PD: Robustness to non-compliant agents in RL

D3.1: rl-berry

D3.2: marketplace simulator

D3.3a: gen-fair

D3.3b: fair-net



Outreach, output & dissemination
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Hirings

# 4 PhDs, 1 post-doc (FAIRPLAY, SCOOL

# CNRS, ENSL, Dauphine held back by contracting

Industrial outreach

# Criteo (FAIRPLAY, POLARIS)

# Ubisoft (ENSL)

Output & dissemination

# Leading ML conferences (NeurIPS, ICML,…)

# See posters in the lobby
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