

Sharp Theoretical and Algorithmic Principles for frugal ML

Rémi Gribonval, LIP, Inria & ENS de Lyon, coordinator

"Frugal learning" : an oxymoron ?

ML = evermore ?

Economic competition Maximizing performance Race towards giant models Unrestrained consumption

Frugality = sobriety ?

where to set the cursor ?

SHARP

Data / computation tradeoffs ?

Data / computation tradeoffs ?

Data / computation tradeoffs ?

3 Main Axes

Organization

WP1 – ISIR Ensuring frugal training via dedicated taylored architectures	WP2 – IRISA Efficient and Powerful architectures for structured data	WP3 – LIGM Incorporating and leveraging prior knowledge	WP4 – GENESIS Lifelong and reusable foundation models	WP5 – List Frugal and Unbiased Generative Models for Multimedia Understanding
(Axis 1)	(Axes 1 and 2)	(Axis 2)	(Axes 2 and 3)	(Axis 3)
3PhD, 3 years postdoc	3PhD, 8 years postdoc	6PhD, 1.5 years postdoc	5PhD, 7 years postdoc	3PhD, 2 years postdoc

Consortium

Integrated pipeline from theoretical foundations to flagship AI applications in vision & NLP

- LIP (ENS de Lyon, Univ. Claude Bernard Lyon 1, CNRS, Inria), Rémi Gribonval, coordinator Sparsity, sketching, statistical learning theory, information theory, mathematics of deep learning
- LAMSADE (Paris-Dauphine and PSL University, CNRS), Alexandre Allauzen, partner Deep learning for natural language and speech processing
- LIGM (École des Ponts ParisTech, Univ Gustave Eiffel, CNRS), Loïc Landrieu, partner Representation learning for computer vision
- **GENESIS** (Inria & University College London), **Benjamin Guedj**, partner Statistical learning theory, PAC-Bayes, mathematics of deep learning, representation learning
- IRISA (CNRS, Univ Rennes, Inria, INSA), Nicolas Keriven, partner Sketched learning, graph neural networks, statistical learning on graphs, optimal transport
- List (Université Paris Saclay, CEA), Hervé Le Borgne, partner Visual and textual content analysis, zero-shot learning, control of generative models
- ISIR (Sorbonne University, CNRS), Nicolas Thome, partner Statistical signal processing applied to distributed learning and deep learning

* uniquement tutelles contractualisantes pour chaque site

Axis 1– Frugal architectures

Endowed with intrinsic tractability guarantees, both for training and inference.

- mathematical foundations of sparse (& structured) networks
 - to reduce bits / flops / watts
- optimal distributed sparse learning
 - beyond the bottlenecks of back-propagation
- architectures with PAC-Bayes guarantees
 - trustworthy models with non-vacuous statistical bounds
- dimension reduction via randomized sketching
 - of gradients, vectors, datasets ...
- sound quantization principles
 - guided by numerical linear algebra & information theory
 - binarized architectures

Axis 2 – Frugal learning principles

To drastically reduce the cost of learning by exploiting prior knowledge.

- limit the waste of current methods
 - avoid end-to-end learning
 - avoid data-augmentation
- learn from the past by incorporating knowledge
 - symmetries & invariances
 - physical models, known or parameterized
 - graphs & (PAC)-Bayesians priors
- showcases : "leap forward" in
 - frugal vision models
 - frugal language models

Axe 3 – "Small" and "raw" data

Leveraging the information from as limited and unrefined data as possible.

- minimalistic foundation models
 - via architectures & principles of Axes 1+2
 - *dissection* of large foundation models
 - *small hidden dimension* of latent spaces, implicit bias, conservation laws, ...
- handling scarce and/or raw data
 - uncover the *structure* & the *relative importance* of data through graphs
 - *relax* textbook *i.i.d. assumptions* on training dataset
 - frugal lifelong learning from tiny and diverse chunks of data
 - explain & exploit *compressibility* of state of the art models

Spotlight: sparsity as a frugality enabler

Natural idea: fewer parameters = fewer bits / flops / watts ...

Dense

Spotlight: sparsity as a frugality enabler

Natural idea: fewer parameters = fewer bits / flops / watts ...

Sparse

Devil in the details -not hardware friendly -can make optim ill-posed !!! Where to put zeroes ???

103

Spotlight: sparsity as a frugality enabler

Natural idea: fewer parameters = fewer bits / flops / watts ...

10⁻⁵ 10⁻⁶ 10⁻⁷

100

 10^{1}

Running time (s)

102

Summary

